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1. Introduction

HE computation of the eigensolution derivatives plays a

significant role in dynamic model updating, structural design
optimization, structural dynamic modification, damage detection
and many other applications. The methods to calculate eigensolution
derivatives are well established for undamped and viscous damped
systems. These common methods can be divided into the modal
method, Nelson’s method, and the algebraic method.

Fox and Kapoor [1] first proposed the modal method for
symmetric undamped systems by approximating the derivative of
each eigenvector as a linear combination of all undamped
eigenvectors. Later, Adhikari and Friswell [2] and Adhikari [3]
extended the modal method to the more general asymmetric systems
with viscous and nonviscous damping, respectively. To simplify the
computation of eigensolution derivatives, Nelson [4] proposed a
method, which requires only the eigenvector of interest by
expressing the derivative of each eigenvector as a particular solution
and a homogeneous solution for symmetric undamped systems.
Later, Friswell and Adhikari [5] extended Nelson’s method to
symmetric and asymmetric systems with viscous damping. Recently,
Adhikari and Friswell [6] extended Nelson’s method to symmetric
and asymmetric nonviscously damped systems. However, Nelson’s
method is lengthy and clumsy for programming. Lee et al. [7] derived
an efficient algebraic method, which has a compact form to compute
the eigensolution derivatives by solving a nonsingular linear system
of algebraic equations for symmetric systems with viscous damping.
Later, Guedria et al. [8] extended the algebraic method to general
asymmetric systems with viscous damping. Recently, Chouchane
et al. [9] wrote an excellent review of the algebraic method for
symmetric and asymmetric systems with viscous damping and
extended their method to the second-order and high-order derivatives
of eigensolutions. In this note, the algebraic method will be extended
to symmetric and asymmetric systems with nonviscous damping.
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The equations of motion describing free vibration of an N-degree-
of-freedom (DOF) linear system with nonviscous (viscoelastic)
damping can be expressed by [3,6]:

Mﬁ(t)—i—/t git—ou(r)dt+ Ku(®) =0 )

—00

Here M and K € RV are, respectively, the mass and stiffness
matrices, g(f) € RV is the matrix of kernel functions, t € R+
denotes time. In the special case, when g(¢t — 1) = C§(¢t — 1) where
C is a constant matrix, Eq. (1) reduces to the case of a viscously
damped system. Therefore, the nonviscous damping model is
considered as a further generalization of the familiar viscous
damping. Taking the Laplace transform of the above equation gives

(®M + sG(s) + K)u(s) =0 or D(s)a(s)=0 2)
where u(s) = L[u(®)] € CV, G(s)=L[g(r)] € CMN and L[]
denotes the Laplace transform. The eigenvalues A; are roots of the
characteristic equation

det[s’M + sG(s) + K] =0 ?3)

In general, the component of G(s) can be represented by the
following form for the linear viscoelastic case [10]:

Pk (s)

c0r= qji(s)

(C))

where p(s) and g (s) are finite-order polynomials in s and the
degree of gu(s) is not less than that of p;(s). Under such
assumptions, the order of the characteristic equation m is usually
more than 2N. Therefore, although the system has N DOF, the
number of eigenvalues is more than 2N. This is a major difference
between viscously and nonviscously damped systems. According to
Adhikari [11], the eigenvectors can be divided into the elastic modes
(corresponding to N complex conjugate pairs of eigenvalues) and
the nonviscous modes (corresponding to the additional m-2N
eigenvalues).

The right and left eigenproblems can be expressed, respectively, as
follows:

MM+ 1GR) +Ku;=0 or DR)u,=0 3)
AM+21,GA) +K)Tv,=0 or DA)Tv,=0 (6

where u; and v; denotes, respectively, the right and left eigenvector
corresponding to the ith eigenvalue A;. The system matrices are
usually symmetric, but the possibility of the asymmetric matrices is
also allowed in this note. For the self-adjoint case (symmetric
matrices) the left and right eigenvectors are equal, v; = u;. Here we
assume that the eigenvalues are distinct. To uniquely determine the
eigenvectors, many approaches have proposed for normalizing the
eigenvectors. Considering the consistent way with traditional modal
analysis for undamped and viscous damped systems, the following
normalization is adopted:

D
v! ID(s) u, =90
ds Y

i @)

where 6; € C is some nonzero constant. Equation (7) reduces to the
corresponding normalization relationship for viscously damped
systems when G(s) is constant with respect to s [6]. Numerical
values of 6; can be selected in several ways; the detailed discussions
on the normalization of complex eigenvectors can be found in [3,12].
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II. Eigensolution Derivatives: Self-Adjoint Case

In the self-adjoint case, the right and left eigenvectors are equal.
The system matrices M, G(;) and K are assumed to depend
continuously on the real design parameter p and their derivatives are
known. Differentiating Eq. (5) with respect to the design parameter
P, the eigenvector derivatives satisfy

D()\i)%‘f‘“f%:hi 3)
d ap
where
o, = 0O (u M+ GO, + 4,260 )u,.
ds 5= )\. ds s=A;
oM G (s) oK
2 9V —lu.
(k, r + 4 o A:M+ 3p)u,

Equation (8) cannot be solved to find the eigenvector derivative
because the matrix D(A;) is singular. For this reason, the
normalization must be used. Differentiating Eq. (7) with v; = u;
yields

D) | o,

T .
2ui as .y ap gl 8[7 Ci (9)
where
2
&=u’ (ZM +2 9G(s) +A; g Ggs) )u,—
ds s=A; ds S=A;
2

= (21, B_M dG(s) ia G(s) u

ap P e, apds |,

Equations (8) and (9) can be rewritten in a linear system of algebraic
equations:

D(%,) o du; h
7 0D(s) & {5’{1}={l_f} (10)
i 9s =i, 2 k) 2
or
Ax;=b; an

Then, the derivatives of eigensolutions can be computed directly by
solving the above algebraic system because the coefficient matrix A;
has a full rank matrix, as demonstrated in the Appendix. When G (4;)
is constant with respect to A;, Eq. (11) reduces to the case of a
viscously damped system. In this special case, Eq. (11) is similar with
that developed in [7] and identical with [9], hence Eq. (11) may be
considered as an extension of the algebraic method [7,9] to
nonviscous damped systems.

III. Eigensolution Derivatives: Nonself-Adjoint Case

Two problems arise in the nonself-adjoint case: the left and right
eigenvector derivatives must be computed simultaneously, and a
supplementary constraint must be imposed to the relative scaling of
the left and right eigenvectors (respectively, their derivatives).

Similarly, differentiating Eq. (6), the left eigenvector derivatives
satisfy

where

ﬂ, + D(; )T =f; (12)
3(}(v)

)T
Vi
ds s=A;

+ BK) Tv
S=A; ap '

Due to v; # u,, the derivative of normalization as in Eq. (9) can be
rewritten as

B = (2kM+G(A)+X

— 27—+

M . IG(s)
l 1 a 1 ap
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oD(s) du; - JA; a[D(s)]" ov;,
vi—— +&—+ul —=¢ (13)
ds Y ap § ap ds =i, ap
where
- 2
i v,.T(zM PR o, ) Ggs) )u[
ds |, ds* |y,
2

¢ = 2)\[87M G (s) i8 G(s) u,

ap op |, apds |,

However, this above additional equation is not enough to uniquely
determine the derivatives of the left and right eigenvectors.
Therefore, a supplementary constraint should be imposed. It can be
noted that the left and right eigenvectors normalized by Eq. (7) are
not determined uniquely. This can be demonstrated by multiplying
the left eigenvector by any scalar and dividing the right eigenvector
by the same scalar; Eq. (7) is also satisfied. The best approach is to set
one component in both eigenvectors to be equal. This component is
arbitrary, but should be chosen such that this component has a large
magnitude in both the left and right eigenvectors. One possibility is to
multiply the magnitudes of the corresponding components of both
eigenvectors and choose the largest product. Suppose that vector
component number #; is chosen, thus

du; v;
A=yt L Qe i 14
{uljn, {Vl}}’l, {ap}n’ {ap}n’ ( )
The above supplementary constraint can be rewritten by
w, oy, v (15)
ap ap
where
W o— n;th column
i=10 - 0 “F 0 --- 0
N

W,;isa (1 x N)weight vector and the n;th component of it associated
with the ith left or right eigenvector is set to a nonzero constant «. To
reduce the condition number, select the nonzero constant « by finding
the absolutely largest element of matrix D(4;).

Rewriting Eqgs. (8), (12), (13), and (15) in the following matrix
form:

D(%,) o W 0 du;

) - T Jp hi

vn| g oo wrmer| |Ja | ]G

s=A; s=A; 0 0

W, 0 0 -W; o, £

0 B —W/ D))" a '
(16)

or

AX =h, a7

The eigensolution derivatives can be computed directly by solving
the above algebraic system because the coefficient matrix A; is a full
rank matrix (see the Appendix). As it can be noted, only one equation
is needed to compute the eigensolution derivatives, therefore, the
method is very simple and compact. Naturally, in the case of
symmetric damped systems, the left and right eigenvectors are
identical, and the new supplementary constraint expressed in
Eq. (15) will be ignored because it is always satisfied. In this special
case, Eq. (16) will reduce to Eq. (11) (the case of symmetric
nonviscously damped systems).

IV. Numerical Example

To illustrate the validity of the approach proposed, a 2 DOF
nonviscously damped system [3,6] is considered. The equations of



Downloaded by STANFORD UNIVERSITY on March 18, 2013 | http://arc.aiaa.org | DOI: 10.2514/1.J051664

2284 AIAA JOURNAL, VOL. 50, NO. 10: TECHNICAL NOTES

Table 1 Eigensolutions and their derivatives with respect to the stiffness parameter k,

Quantity Elastic mode 1 Elastic mode 2 Nonviscous mode 1 Nonviscous mode 2
A —0.0387 £ 38.3232 —1.5450 £ 97.5639i —2.8403 —5.9923
u; —0.7500 £ 0.0043i 0.6622 F 0.0035i —0.0165 0.0055
—0.6616 F 0.0041i —0.7501 £ 0.0075i 0.0083 —0.0028
OA;/0k;  —9.1317 x 107> £ 7.3385 x 1073i 5.9174 x 1075 £ 2.2461 x 1073} —2.7088 x 107* —2.9832 x 1073

du;/ 0k, { 1.1304 x 10~ F 6.6079 x 10*6;'} {3.8526 x 1075 F 1.5156 x 10761'} {7.2075 x 1070 } {71.8408 x 1070 }

1.6934 x 107> £ 4.1016 x 107%;

4.9412 x 107> F 2.5627 x 1079}

4.6049 x 107° —1.7653 x 107¢

motion describing the free vibration of the system can be expressed
by Eq. (2), with

_ m O _ k1+k3 _k3
M_|:0 m]’ K_[ —ky ks +ky |

G(s) = cf(l +s/p) ™ + (1 + s/m)*l}[_]l 1 ]

where m=1kg, k =1000N/m, k,=2000N/m, k3=
1600 N/m, ¢ =200 Ns/m, i, =5 s™'and pu; =7 s71.

The normalization constants 6; are selected such that 6; = 2A; are
for the elastic modes and 6; = 1 are for the nonviscous modes.
Adhikari’s method [11] was used to compute the eigenvalues and
eigenvectors. The derivatives of eigensolutions are uniquely
determined from Eq. (11) and shown in Table 1. As it can be noted,
the results are exactly the same as that in [6].

V. Conclusions

A method has been outlined to compute simultaneously and
accurately the derivatives of eigenvalues and their associated
eigenvectors for the systems with nonviscous damping. The
algebraic method used, which requires only the eigenvector of
interest, gives exact eigensolution derivatives. Moreover, the
proposed method is easy to implement because it is very compact. A
numerical example has demonstrated the validity of the proposed
approach.

Appendix A: Numerical Stability
In this Appendix, the coefficient matrix A; will be proved to be a

full rank matrix. Assume A;s = 0 fors = [?} € CW+Dx1 That s

D)0 +ar=0 (AD)
Zuf% O+&1=0 (A2)
s=A;

Premultiplying Eq. (A1) by u! and using Eq. (5) yields

, ID(s)

u! u,r=0 (A3)
ds

s=A;

One can obtain 7 is equal to a zero from Eq. (7). Substituting 7 =0
into Eq. (Al), there is

D(A,)®=0 (A4)

Obviously, u; is a particular solution of the above equation. Thus, ®
can be expressed by

0 = cu, (A5)

where c; are constant coefficients. Substituting Eq. (AS) into
Eq. (A2), and utilizing normalization Eq. (7), one can obtain ¢; = 0,
thus, s = 0. The equation A;s = 0 has the unique solution s = 0;
hence, it can be concluded that A, is always a full rank matrix. The

coefficient matrix A ; of Eq. (17) can also be proved to be a full rank
matrix; the proof will not be given herein, because it can be proved
based on the similar procedures above.
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